

TQ04 Type C integrated weather station user's manual

SIBO.X INDUSTRIAL CO., LTD.

Add: No. Building 1, No. 1, Jingshi Road, Cicheng Town Industrial Park, Jiangbei District, Ningbo City, Zhejiang, China
https://www.sbxsun.com
Email: info@sbxsun.com
Tel: +86-15958288207

Table of Contents

1.product description	1
2. Equipment size	3
3.Equipment installation instructions	.4
4. Configuration software installation and use	5
5. Letter of agreement	6
6. Common problems and solutions1	0

1. product description

1.1 product description

C-type integrated weather station can be widely used in environmental detection, integrating wind speed, wind direction, temperature and humidity, noise collection, PM2.5 and PM10, CO2, and atmospheric pressure. The equipment adopts standard MODBUS-RTU communication protocol and RS485 signal output. , The communication distance is up to 2000 meters, and the data can be uploaded to the customer's monitoring software or PLC configuration screen through 485 communication, and it also supports secondary development.

This product is widely used in various occasions that need to measure environmental temperature and humidity, noise, air quality, CO2, atmospheric pressure, etc. It is safe and reliable, beautiful in appearance, easy to install, and durable.

1.2 Features

This product is small in size, light in weight, made of high-quality anti-ultraviolet materials, long service life, high-sensitivity probe, stable signal and high precision. The key components adopt imported components, which are stable and reliable, and have the characteristics of wide measurement range, good linearity, good waterproof performance, convenient use, easy installation, and long transmission distance.

1. The integrated design of multiple collection devices is adopted, which is easy to install.

2. Wind speed and direction structure and weight have been carefully designed and distributed respectively, with small moment of inertia and sensitive response

3. Noise collection, accurate measurement, the range is as high as 30dB~130dB.

4. PM2.5 and PM10 are collected at the same time, range: 0-1000ug/m3, resolution 1ug/m3, unique dual-frequency data collection and automatic calibration technology, the consistency can reach ±10%.

5. CO2 range: 0-5000ppm, resolution 1ppm.

6. Measure the environmental temperature and humidity, the measuring unit is imported from Switzerland, and the measurement is accurate.

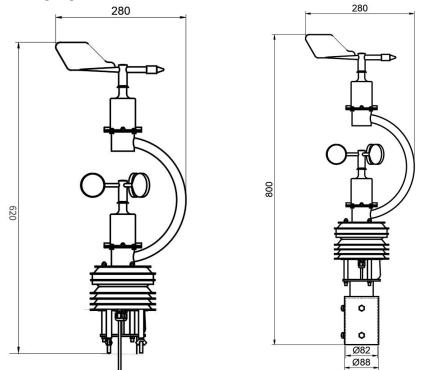
7. Wide range 0-120Kpa air pressure range, applicable to various altitudes.

8. Using dedicated 485 circuit, stable communication, 10~30V wide voltage range power supply.

1.3 Main Specifications

DC power supply (default)	10-30VDC				
Maximum power consumption	RS485 output	0.8W			
	wind speed	±(0.2+0.03V) m/s V means wind speed(60%RH,25℃)			
	humidity	±3%RH(60%RH,25℃)			
	temperature	±0.5℃ (25℃)			
precision	Atmospheric pressure	±0.15Kpa@25℃ 101Kpa			
	noise	±0.5dB (at reference pitch, 94dB@1kHz)			
		Particle counting efficiency:			
	PM2.5	50%@0.3um, 98%@>=0.5um.			
		±10ug/m3@0~100ug/m3			
	CO2	±(50ppm+ 3%F·S) (25℃)			
	wind speed	0~70m/s			
	wind direction	8 directions			
	humidity	0%RH~99%RH			
	temperature	-40 ℃ ~+80 ℃			
range	Atmospheric pressure	0-120Kpa			
	noise	30dB~120dB			
	PM10 PM2.5	0-1000ug/m3			
	CO2	0-5000ppm			
	temperature	≤0.1 °C/y			
	humidity	≤1%/y			
long term stability	Atmospheric pressure	-0.1Kpa/y			
	noise	≤3db/y			
	PM10 PM2.5	≤1%/y			
	CO2	≤1%/y			
	wind speed	≤0.5s			
Response time	wind direction	≤0.5s			
	Temperature	≤1s			

	and humidity	
	light intensity	≤0.1s
	Atmospheric	4 1-
	pressure	≤1s
	noise	≤1s
	PM10 PM2.5	≤90S
	CO2	≤90S
		RS485 (standard Modbus
output signal	RS485 output	communication protocol)


1.4 product model

TQ04-			Integrated weather station
	N01-		485 communication (standard Modbus-RTU
			protocol)
		1	C-type one-piece shell

Note: If PM element is selected, CO2 element cannot be selected, and both cannot be

selected at the same time.

2. Equipment size

Equipment size drawing (unit: mm) Dimension drawing of sleeve equipment (unit: mm)

Equipment installation instructions Inspection before equipment installation

Equipment List:

- 1. One C type integrated weather station equipment
- 2. A pack of mounting screws
- 3.2m pole and sleeve (optional)
- 4. Warranty card, certificate of conformity

3.2 Interface Description

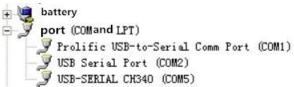
The wide voltage power input range is 10~30V. When wiring the 485 signal line, pay attention to the two lines A and B not to be reversed, and the addresses of multiple devices on the bus must not conflict.

	Thread color	Description	
		Positive power supply (10~30V	
power supply	brown	DC)	
	black	Power negative	
Communication	green	485-A	
	blue	485-B	

3.3 485 Field wiring instructions

When multiple 485 devices are connected to the same bus, there are certain requirements for on-site wiring. For details, please refer to the "485 Device Field Wiring Manual" in the data package.

3.4installation method



4. Configuration software installation and use 4.1 Software selection

Open the data package, select "Debugging software" --- "485 parameter configuration software", find "485 parameter configuration tool" Just open it.

4.2 parameter settings

①. Select the correct COM port (check the COM port in "My Computer—Properties—Device Manager—Port"). The following figure lists the driver names of several different 485 converters.

② Connect only one device alone and power it on, click the test baud rate of the software, the software will test the baud rate and address of the current device, the default baud rate is 4800bit/s, and the default address is 0x01.

3 . Modify the address and baud rate according to the needs of use, and at the

same time, you can query the current function status of the device.

④. If the test is unsuccessful, please recheck the equipment wiring and 485 driver installation.

485 Parameter Configuration Tool V3.3	
Serial Number COM1 Test Baud Rate	vice
Temperature&humidity ₩ater leak Smoke Ir Temperature Temp&Humidity]	frared Lighting Gas Wind Speed Direction Soil Weather Sensor
	quire Time

5. letter of agreement

5.1 Basic communication parameters

Code	8-bit binary				
Data bit	8-bit				
Parity bit	no				
Stop bit	1 person				
Error checking	CRC (Redundant Cyclic Code)				
	2400bit/s, 4800bit/s, 9600 bit/s can be set, the factory default				
Baud rate	is 4800bit/s				

5.2 Data frame format definition

Using Modbus-RTU communication protocol, the format is as follows:

Initial structure \geq 4 bytes of time

Address code = 1 byte

Function code = 1 byte

Data area = N bytes

Error check = 16-bit CRC code

Time to end structure \geq 4 bytes

Address code: the starting address of the transmitter, which is unique in the communication network (factory default 0x01).

Function code: The command function instruction issued by the host, this transmitter only uses function code 0x03 (read register data).

Data area: The data area is the specific communication data, pay attention to the high byte of the 16bits data first!

CRC code: two-byte check code.

Host query frame structure:

address	function	Register start	Register	Check code	Check code
code	code	address	length	low byte	high byte
1byte	1byte	2byte	2byte	1byte	1byte

Slave machine response frame structure:

addres	function	Number of	Data	Data	Data N	Check code	Check code
s code	code	valid bytes	area	area two	area	low byte	high byte
1byte	1byte	1byte	2byte	2byte	2byte	1byte	1byte

5.3 Communication register address description

The contents of the register are shown in the following table (support 03/04 function code):

Register address	PLC or configuration address	content	operat ing	Definition description
500	40501	Wind speed value	Read only	10 times the actual value
501	40502	Wind force	Read only	Actual value (The wind level value corresponding to the
				current wind speed)
502	40503	Wind direction (0-7 files)	Read only	Actual value (the direction of true north is 0, the value is increased clockwise, and the value of true east is 2)
503	40504	Wind direction (0-360°)	Read	Actual value (the direction

			only	of true north is 0° and the
				degree increases
				clockwise, and the direction
				of true east is 90°)
504	40505	Humidity value	Read	10 times the actual value
504	40505		only	
505	40500	Tanananati wa walioa	Read	10 times the estual value
505	40506	Temperature value	only	10 times the actual value
500	40507	Noise value	Read	10 times the estual value
506	40507		only	10 times the actual value
		PM2.5 value (if CO2 type	Deed	
507	40508	device is selected, this	Read	Actual value
		register is CO2 value)	only	
		PM10 value (if CO2 type	Deed	
508	40509	equipment is selected, this	Read	Actual value
		register is empty)	only	
500	40540	Atmospheric pressure	Read	10 times the estual value
509	40510	value (unit Kpa,)	only	10 times the actual value

5.4 Communication protocol example and explanation

5.4.1Example: Read the real-time wind speed value of the transmitter device (address 0x01)

Interrogation frame

address	function	starting	Data length	Check code	Check code
code	code	address		low byte	high byte
0x01	0x03	0x01 0xF4	0x00 0x01	0x C4	0x04

Reply frame

address code	function code	Returns the number of valid bytes	Wind speed value	Check code low byte	Check code high byte
0x01	0x03	0x02	0x00 0x7D	0x78	0x65

Real-time wind speed calculation:

Wind speed: 007D (hexadecimal) = 125 => wind speed = 12.5 m/s

5.4.2Example: Read the wind direction value of the transmitter device (address 0x01)

Interrogation frame

address	function	starting	Data length	Check code	Check code
code	code	address		low byte	high byte
0x01	0x03	0x01 0xF6	0x00 0x01	0x65	0xC4

Reply frame

address code	function code	Returns the number of valid bytes	Wind direction value	Check code low byte	Check code high byte
0x01	0x03	0x02	0x00 0x02	0x39	0x85

Wind direction calculation:

Wind direction: 0002 (hexadecimal) = 2 => wind direction = east wind

5.4.3Example: Read the temperature and humidity value of the transmitter device (address 0x01)

Interrogation frame

address c	function co	starting ad	Data length	Check code	Check code
ode	de	dress		low byte	high byte
0x01	0x03	0x01 0xF8	0x00 0x02	0x44	0x06

Response frame (for example, the temperature is -10.1 $^\circ\!\!\mathbb{C}$ and the humidity is 65.8%RH)

	· · ·	•				,
addres	function	Number of	Humidity v	Temperatu	Check cod	Check cod
s code	code	valid bytes	alue	re value	e low byte	e high byt
						е
0x01	0x03	0x04	0x02 0x92	0xFF 0x9	0x5A	0x3D
				В		

Temperature: upload in the form of complement code when the temperature is lower than $0\,{\rm ^\circ\!C}$

0xFF9B (hexadecimal) = -101 => temperature = -10.1 °C

humidity:

0x0292 (hexadecimal) = 658 => humidity = 65.8%RH

6. Common problems and solutions The device cannot connect to the PLC or computer

possible reason:

1) The computer has multiple COM ports, and the selected port is incorrect.

2) The device address is wrong, or there are devices with duplicate addresses (the factory defaults are all 1).

3) The baud rate, check method, data bit, stop bit are wrong.

4) The host polling interval and waiting response time are too short, and both need to be set above 200ms.

5) The 485 bus is disconnected, or the A and B wires are connected reversely.

6) If the number of equipment is too much or the wiring is too long, power supply should

be nearby, add 485 booster, and add 120Ω terminal resistance at the same time.

7) The USB to 485 driver is not installed or damaged.

8) The equipment is damaged.