

TQ03 Manual for Ultrasonic Integrated Weather Station

SIBO.X INDUSTRIAL CO., LTD.

Add: No. Building 1, No. 1, Jingshi Road, Cicheng Town Industrial Park, Jiangbei District, Ningbo City, Zhejiang, China
https://www.sbxsun.com
Email: info@sbxsun.com
Tel: +86-15958288207

Table of Contents

1. Product description	. 1
2. Equipment size	4
3. Equipment installation instructions	5
4. Configuration software installation and use	6
5. Lletter of agreement	7
6. Common problems and solutions	11

1. product description

1.1 product description

This small integrated weather station can be widely used in environmental detection, integrating wind speed, wind direction, temperature and humidity, noise collection, PM2.5 and PM10, atmospheric pressure, and light. The equipment adopts standard MODBUS-RTU communication protocol and RS485 signal output. The communication distance can be up to 2000 meters, and data can be uploaded to the customer's monitoring software or PLC configuration screen through 485 communication, and secondary development is also supported.

With the built-in electronic compass selection device, there is no longer a position requirement during installation, just ensure that it is installed horizontally. It is suitable for use in mobile occasions such as marine ships and automobile transportation, and there is no direction requirement during installation.

This product is widely used in various occasions that need to measure environmental temperature and humidity, noise, air quality, atmospheric pressure, light, etc. It is safe and reliable, beautiful in appearance, easy to install, and durable.

1.2 Features

This product is small in size, light in weight, made of high-quality anti-ultraviolet materials, long service life, high-sensitivity probe, stable signal and high precision. The key components adopt imported components, which are stable and reliable, and have the characteristics of wide measurement range, good linearity, good waterproof performance, convenient use, easy installation, and long transmission distance.

1. The integrated design of multiple collection devices is adopted, which is easy to install.

2. Wind speed and direction are measured by ultrasonic principle, no angle limit, 360° omni-directional, wind speed and wind direction data can be obtained at the same time.

3. Noise collection, accurate measurement, the range is as high as 30dB~130dB.

4. PM2.5 and PM10 are collected at the same time, range: 0-1000ug/m3, resolution 1ug/m3, unique dual-frequency data collection and automatic calibration technology, the consistency can reach ±10%.

5. Measure the environmental temperature and humidity, the measuring unit is imported from Switzerland, and the measurement is accurate.

6. Wide range 0-120Kpa air pressure range, applicable to various altitudes.

7. Using dedicated 485 circuit, the communication is stable.

8. Equipment with built-in electronic compass, no direction requirements during

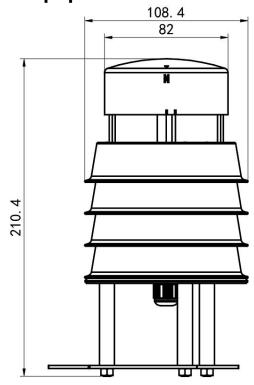
SIBXSUN

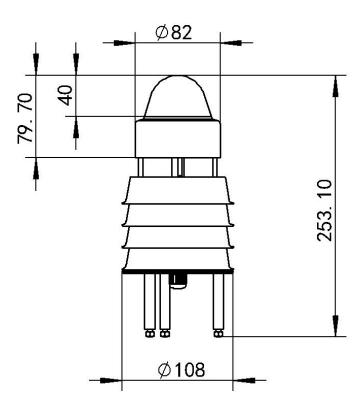
installation, just install it horizontally.

1.3 Main Specifications

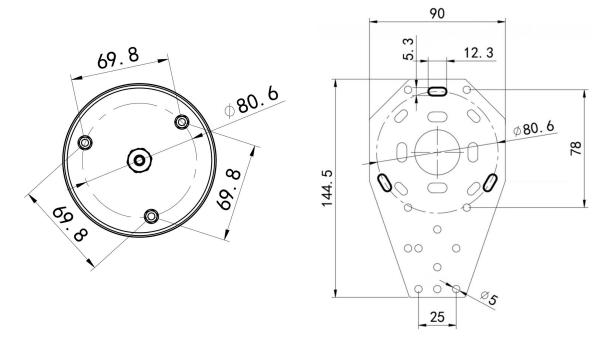
DC power supply (default)		10-30VDC
Maximum power consumption	RS485 output	1.2W
	wind speed	±(0.2m/s±0.02*v) (v is the real wind speed)
	wind direction	±3°
	humidity	±3%RH(60%RH,25℃)
	temperature	±0.5℃ (25℃)
precision	Atmospheric pressure	±0.15Kpa@25℃ 101Kpa
produción	noise	±0.5dB (at reference pitch, 94dB@1kHz
		Particle counting efficiency:
	PM2.5	50%@0.3um, 98%@>=0.5um.
		±10ug/m3@0~100ug/m3
	CO2	±(50ppm+ 3%F·S) (25℃)
	light intensity	±7%(25℃)
	wind speed	0~60m/s
	wind direction	0~359°
	humidity	0%RH~99%RH
	temperature	-40 ℃ ~+80 ℃
range	Atmospheric pressure	0-120Kpa
	noise	30dB~120dB
	PM10 PM2.5	0-1000ug/m3
	CO2	0-5000ppm
	light intensity	0~200000 Lux
	temperature	≤0.1℃/y
	humidity	≤1%/y
long term stability	Atmospheric pressure	-0.1Kpa/y
	noise	≤3db/y
	PM10 PM2.5	≤1%/y

2


	CO2	≤1%/y	
	light intensity	≤5%/y	
	wind speed	1S	
	wind direction	1S	
	Temperature		
	and humidity	≤1s	
Boononoo timo	Atmospheric		
Response time	pressure	≤1s	
	noise	≤1s	
	PM10 PM2.5	≤90S	
	CO2	≤90S	
	light intensity	≤0.1s	
		RS485 (standard Modbus	
output signal	RS485 output	communication protocol)	
DC power supply (default)	10-30VDC		


1.4 product model

TQ03-				Ultrasonic integrated weather station
	N01-			485 communication (standard Modbus-RTU
				protocol)
		3-		Small ultrasonic integrated shell
			no	No built-in electronic compass
			С	Built-in electronic compass function
			Р	


2. Equipment size

Equipment size drawing (unit: mm) mm)

Dimensional drawing with optical rainfall element (unit:

Dimensions of the mounting bracket (unit: mm)

Equipment installation instructions Inspection before equipment installation

Equipment List:

- 1. One integrated weather station equipment
- 2. Warranty card, certificate of conformity

3.70cm waterproof plug-in male plug, 1 white bracket, 2 M4*10 screws and nuts, 3 M5 nuts

3.2installation method

Beam installation (optional):

The installation of devices without electronic compass is shown in the figure below, and devices with built-in electronic compass only need to be installed horizontally.

Note: Make the N-word direction on the device face due north to avoid error.

3.3 Interface Description

DC power supply 10-30V power supply. When wiring the 485 signal line, pay attention to the two lines A/B not to be reversed, and the addresses of multiple devices on the bus

must not conflict.

	Thread color	Description
	brown	V+(10-30V DC)
power supply	black	V-
	green	485-A
Communication	blue	485-B

3.4 485 Field wiring instructions

When multiple 485 devices are connected to the same bus, there are certain requirements for field wiring. For details, please refer to the "485 Device Field Wiring Manual" in the information package.

4. Configuration software installation and use

4.1 Software selection

Open the data package, select "Debug software" --- "485 parameter configuration

software", find **TEVAR** ""485 parameter configuration tool" can be opened.

4.2 parameter settings

1. Select the correct COM port (check the COM port in "My

Computer—Properties—Device Manager—Port"). The following figure lists the driver names of several different 485 converters.

Port (COMand LPT)
 Prolific USB-to-Serial Comm Port (COM1)
 USB Serial Port (COM2)
 USB-SERIAL CH340 (COM5)

② Connect only one device alone and power it on, click the test baud rate of the software, the software will test the baud rate and address of the current device, the default baud rate is 4800bit/s, and the default address is 0x01.

③. Modify the address and baud rate according to the needs of use, and at the same time, you can query the current function status of the device.

4. If the test is unsuccessful, please recheck the equipment wiring and 485 driver installation.

6

🕏 485 Parameter Configuration Tool V3.3	X
Serial Number Device Set Baud Rate COM1 Test Baud Rate 1 Inquire Set up	up
Temperature&humidity Water leak Smoke Infrared Lighting Gas Wind Speed Direction Soil Weather Senso Temperature Temp&Humidity]	r] 4)
Temperature C Inquire Real Time	

5. letter of agreement

5.1 Basic communication parameters

Code	8-bit binary	
Data bit	8-bit	
Parity bit	no	
Stop bit	1 person	
Error checking	CRC (Redundant Cyclic Code)	
	2400bit/s, 4800bit/s, 9600 bit/s can be set, the factory default	
Baud rate	is 4800bit/s	

5.2 Data frame format definition

Using Modbus-RTU communication protocol, the format is as follows:

Initial structure \geq 4 bytes of time

Address code = 1 byte

Function code = 1 byte

Data area = N bytes

Error check = 16-bit CRC code

Time to end structure \geq 4 bytes

Address code: the starting address of the transmitter, which is unique in the communication network (factory default 0x01).

Function code: The command function instruction issued by the host, this transmitter

only uses function code 0x03 (read register data).

Data area: The data area is the specific communication data, pay attention to the high

byte of the 16bits data first!

CRC code: two-byte check code.

Host query frame structure:

address	function	Register start	Register	Check code	Check code
code	code	address	length	low byte	high byte
1bit	1bit	2bit	2bit	1bit	1bit

Slave machine response frame structure:

addres	function	Number of	Data	Data	Data N	Check code	Check code
s code	code	valid bytes	area	area two	area	low byte	high byte
1bit	1bit	1bit	2bit	2bit	2bit	1bit	1bit

5.3 Communication register address description

The contents of the register are shown in the table below (support 03/04 function code):

Register address	PLC or configuration address	content	operat ing	Definition description
500	40501	Wind speed value	Read only	100 times the actual value
501	40502	Wind force	Read only	Actual value (The wind level value corresponding to the current wind speed)
502	40503	Wind direction (0-7 files)	Read only	Actual value (the direction of true north is 0, the value is increased clockwise, and the value of true east is 2)
503	40504	Wind direction (0-360°)	Read only	Actual value (the direction of true north is 0° and the degree increases clockwise, and the direction of true east is 90°)
504	40505	Humidity value	Read	10 times the actual value

			only			
505	40500	T	Read			
505	40506	Temperature value	only	10 times the actual value		
500	10507	N	Read			
506	40507	Noise value	only	10 times the actual value		
505	10500		Read			
507	40508	PM2.5 value	only	Actual value		
	10500		Read			
508	40509	40509 PI	PM10 value only		only	Actual value
		Atmospheric pressure	Read			
509	40510	value (unit Kpa,)	only	10 times the actual value		
		High 16-bit value of Lux	Read			
510	40511	value of 20W	only	Actual value		
		Low 16-bit value of Lux	Read			
511	40512	value of 20W	only	Actual value		
= 10	10510	20W light value (unit:	Read			
512	40513	hundred lux)	only	Actual value		
= 10	10511	Optical rainfall rainfall value	Read			
513	40514	(unit: mm)	only	10 times the actual value		

Contents of the calibration register

Register address	content	Definition description
6000H	Small ultrasonic wind	0 means normal direction
	direction offset register	1 represents the direction
		offset 180°
6001H	Small ultrasonic wind speed	Write 0xAA, wait for 10s,
	zero adjustment register	and set the device to zero
6002H	Optical Rainfall Zeroing	Write 0x5A, set the rainfall
	Register	value to zero
6003H	Optical rain sensitivity value	The default value is 28 H,
		which can increase the
		sensitivity of rainfall

5.4 Communication protocol example and explanation

5.4.1Example: Read the real-time wind speed value of the transmitter

device (address 0x01)

Interrogation frame

address	function	starting	Data length	Check code	Check code
code	code	address		low byte	high byte
0x01	0x03	0x01 0xF4	0x00 0x01	0x C4	0x04

Page

Reply frame

address code	function code	Returns the number of valid bytes	Wind speed value	Check code low byte	Check code high byte
0x01	0x03	0x02	0x00 0x7D	0x78	0x65

Real-time wind speed calculation:

Wind speed: 007D (hexadecimal) = 125 => wind speed = 1.25 m/s

5.4.2Example: Read the wind direction value of the transmitter device (address 0x01)

Interrogation frame

address	function	starting	Data length	Check code	Check code
code	code	address		low byte	high byte
0x01	0x03	0x01 0xF6	0x00 0x01	0x65	0xC4
Reply	frame				

address code	function code	Returns the number of valid bytes	Wind direction value	Check code low byte	Check code high byte
0x01	0x03	0x02	0x00 0x02	0x39	0x85

Wind direction calculation:

Wind direction: 0002 (hexadecimal) = 2 => wind direction = east wind

5.4.3Example: Read the temperature and humidity value of the transmitter device (address 0x01)

Interrogation frame

address c	function co	starting ad	Data length	Check code	Check code
ode	de	dress		low bit	high byte
0x01	0x03	0x01 0xF8	0x00 0x02	0x44	0x06

Response frame (for example, the temperature is -10.1 °C and the humidity is 65.8%RH)

addres	function	Number of	Humidity v	Temperature	Check c	Check code hig
s code	code	valid bytes	alue	value	ode low	h byte
					bit	
0x01	0x03	0x04	0x02 0x92	0xFF 0x9B	0x5A	0x3D

Temperature: upload in the form of complement code when the temperature is lower than $0\,{}^\circ\!{\rm C}$

0xFF9B (hexadecimal) = -101 => temperature = -10.1 °C

humidity:

0x0292 (hexadecimal) = 658 => humidity = 65.8%RH

6. Common problems and solutions

The device cannot connect to the PLC or computer possible reason:

1) The computer has multiple COM ports, and the selected port is incorrect.

2) The device address is wrong, or there are devices with duplicate addresses (the factory defaults are all 1).

3) The baud rate, check method, data bit, stop bit are wrong.

4) The host polling interval and waiting response time are too short, and both need to be set above 200ms.

5) The 485 bus is disconnected, or the A and B wires are connected reversely.

6) If the number of equipment is too much or the wiring is too long, power supply should be nearby, add 485 booster, and add 120Ω terminal resistance at the same time.

7) The USB to 485 driver is not installed or damaged.

8) The equipment is damaged.

11